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Experimentally determined natural frequencies and modes shapes are presented for an elastically

point-supported isotropic plate with attached masses under impulsive loading. These results are

compared to frequencies and to modes shapes determined from the Rayleigh–Ritz method and a finite

element analysis using COMSOL. Accelerometers mounted at three locations on the plate, provide input

for ME’Scope Modal Analysis Software to identify frequency peaks and modes shapes. Orthogonal

polynomials, which meet free–free plate boundary conditions, are selected as the basis functions used

in the Rayleigh–Ritz method. A Mindlin plate theory, adjusted for negligible transverse shear effects, is

used in COMSOL. Frequencies and mode shapes for four plate configurations are presented, compared

using each method, and indicate good agreement between the numerical, analytical and experimental

results.

Published by Elsevier Ltd.
1. Introduction

Optical beam pointing is quickly becoming a topic of
importance and has applications in areas ranging from laser
communications to space applications. Potential also exists for
development into the next generation of weapon systems. Despite
its apparent utility and widespread potential, several factors
affect the transmission of the beam from its source to its receiver.
Atmospheric effects on beam propagation are important areas of
investigation. Turbulence, temperature, and pressure will
all affect the beam’s coherence and directionality. Structural
vibration of the system that houses the optical beam pointing
system also dramatically affects its path of motion. If the systems
are placed aboard aircraft, mechanical vibrations of the structure
are transmitted to the beam. Jitter is the expression coined to
describe this induced vibration and describes small amplitude
vibration. For example, a 0.01 m diameter optical beam experien-
cing 1 micro-radian of jitter will result in roughly a nine-fold
decrease in the intensity of the beam at distance of 10 km. The
United States Naval Academy has developed and built an optical
vibration laboratory to investigate the effects of jitter on the
accuracy of directed energy beams and to develop control
methodologies to reduce its detrimental effect. A key component
of this facility is the optical platform.

The optical platform and all of its mechanical elements are
modeled as an elastically point-supported plate with attached
Ltd.

: +1 410 293 3041.
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masses. Point-supported plates are plates that have prescribed
displacements at discrete locations within its domain or at
specific locations on its edges. Although not typical, displacement
derivatives at various locations also can be prescribed. The
literature contains a wealth of research which presents the
analysis of plates supported on elastic and viscoelastic point
supports; only a brief survey is presented here.

Cox and Boxer [1] provided one of the early contributions to
this topic and discussed the vibration of a point-supported plate
at its corners and free edge boundaries elsewhere. Both rotary
inertia and shear effects are neglected for the plate. A finite
difference approach is used to solve the governing differential
equation providing mode shapes and frequencies for both square
and rectangular plates. Amba-Rao [2] studied the vibration of a
simply supported rectangular plate carrying a concentrated mass
and presents a closed-form solution for the frequencies and mode
shapes. To develop the formulae for the frequencies, the
transverse displacement is represented as a double infinite sine
series. Kerstens [3] incorporates a modal constraint method to
solve the problem of vibration of a rectangular, arbitrarily
supported plate. The modal constraint approach uses the principle
of minimum potential energy which includes virtual work
done by homogeneous boundary conditions. Point supports are
represented through the virtual work by homogenous boundary
condition. A Lagrange multiplier is used to represent the unknown
forces. The use of the Rayleigh–Ritz method is a common
approach for solving the eigenvalue problem associated with
plate vibration. Of particular interest is the selection of basis
function used in the analysis. Lee and Lee [4] incorporated a new
class of admissible functions to study the vibration of elastically
n elastically point-supported plate with attached masses. Thin
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Fig. 1. Plan View of the Experimental Setup.

Table 1
Experimental plate configurations.

Configuration Description

A Plate only

B Plate with mass at center

C Plate with inertial actuator at center

D Plate with mass at center and inertial actuator at edge

Table 2
Stiffnesses for spring.

kth Spring Spring stiffness, lb/ft

1 1517.0
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point supported plates. The basis function corresponds to a
similarly supported beam under a point load. Singularity func-
tions are used to completely define the equation of the elastic
curve. Normalized frequencies are presented for a plate that is
simply supported on all sides, for varying support locations and
for several elastic support stiffnesses. Kim and Dickerson [5]
incorporate orthonormal polynomials as the basis functions in the
Rayleigh–Ritz method to study the vibration of point-supported
plates with a combination of simply supported and clamped-edge
conditions. The orthronormal set is constructed using the
Gramm–Schmidt process. Kocaturk et al [6] considered the
dynamic response of a thin orthotropic plate supported on
viscoelastic supports. Additional masses are attached to the plate,
and the system is subjected to harmonic input. The masses are
placed symmetrically along the diagonals of the plate. A Ritz
method is used to compute the eigenparameters presented in
Lagrange’s equations of motion. Results are presented for several
material constituents and symmetric modes of vibration consis-
tent with geometry. The authors also present results for the force
transmissibility as a function of plate material properties and
added mass.

Of particular interest is experimental work that has been done
in this area of investigation. Not as voluminous as numerical and
analytical work, several contributions are noteworthy in the
literature. Nieves et al [7] used laser interferometry to identify the
flexural vibrations of a thick isotropic plate. The technique is said
to consist solely of out-of-plane displacements and results are
compared with those from a Ritz method using a Mindlin plate
theory. Lee and Kam [8] considered the effect of elastic-edge
supports on the vibration of composite plates as a means of
determining the mechanical properties of a plate. Impulse data
provided the necessary frequencies to extract the mechanical
properties.

Recently, experimental studies of the vibration of an isotropic
plate with discrete masses resting on elastic point supports were
conducted at the US Naval Academy. Although geometrically similar,
measured stiffness of the springs varied by as much as 30%. Several
plate configurations were arranged based upon mass placement. The
goal of this paper is to compare frequencies and mode shapes
extracted from this experimental study with those computed by
analytical and computational methods. For completeness, a brief
overview of the experimental setup is presented.
2 1248.2

3 1612.5

4 1401.1

Table 3
Masses for components.

Element Mass, slugs

Optical platform 1.310

Movable mass 0.118

Inertial actuator 0.185
2. Experimental setup

The components are mounted on an optical table which is used
to isolate effects of external vibrations. The system is used to
investigate control methods for mitigating platform vibration and
atmospheric effects to directed energy (DE) beams. As part of the
investigation, a modal analysis of a rigid aluminum plate mounted
on springs and isolators on the optical table was necessary. Fig. 1
shows the elements of the actual mechanical system consisting of
the aluminum plate, four mounting springs and vibration
isolators, an inertial actuator, accelerometers, and a discrete
mass representing a laser source. Several configurations were
investigated which varied the location of the mass and actuator
mass and are listed in Table 1.

Tables 2 and 3 provide the stiffnesses and masses of various
components used in the experimental investigation. Each
stainless steel spring is 1.500 in long, with an outer diameter of
1.095 in. The springs are sandwiched between the plate above and
air mount below by means of 2 aluminum cups and are not
fastened to either the plate or air mount. The spring constants
were selected such that the weight of the plate would maintain
spring compression during the imposed vibration.
Please cite this article as: Watkins RJ, et al. Vibration response of a
Walled Struct (2010), doi:10.1016/j.tws.2010.02.005
The plate and spring assembly sit on four SLM-1A air mounts
from Newport Corporation. These air mounts are used to dampen
the effect of plate motion on the optical table. The mounts were
pressurized to 40 psi, resulting in a natural frequency for the air
mount of about 3.5 Hz, below the first modal frequency of the
plate and spring system of about 5 Hz. The optical table is a
Newport RS 4000 series 4 ft by 8 ft by 18 in research grade optical
table mounted on 4 Newport I-2000 Pneumatic Isolators with
Automatic Leveling. This optical table provides the base support
n elastically point-supported plate with attached masses. Thin
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for mounting the components and is pneumatically supported to
isolate the table from the environment. The plate is a Newport SA
series solid aluminum plate, 30 by 30 by 0.5 in, with drilled and
tapped 1

4 -20 holes on a 1 in grid, with a density of approximately
7 lb/ft2. The actuator used was manufactured by CSA Engineering
Corporation and is capable of providing a variable 10 lb force in a
bandwidth of 1–1000 Hz. The actuator is configured to impart
multiple frequency periodic motion as well as random vibrations
to the plate. The computer control system is based on MATLAB
R2006b with SIMULINK from Mathworks, and the xPC Targetbox
from SpeedGoat. The main computer for control implementation
and experiment supervision is a Dell Precision 690 work station
with a CPU speed of 3.8 GHz. The xPC Targetbox is an Intel
Core 2 Duo running at 2.13 GHz. Accelerations were measured
at three locations using 3-axis accelerometers from Kistler.
These accelerometers, model 8690C10, have a resolution
of 0.0012 mgrms with a frequency range of 1 Hz–3 kHz, and are
driven by a 16 channel Kistler Piezotron Coupler, model 5124A.
3. Analytical formulation

The equation governing the dynamic response of an isotropic
plate with added masses resting on spring is given

Dr4wþ
X4

p ¼ 1

kpdðx�xpÞdðy�ypÞwðx,yÞ

þ

� XNq

q ¼ 0

dðx�xqÞdðy�yqÞmqþM
�

w,tt ¼ 0 ð1Þ

where D is the flexural stiffness, w(x, y) is the transverse
displacement, kp is the stiffness of the spring located at (xp, yp)
and mq is the discrete mass located at (xq, yq). Also Nq represents
the number of discrete masses on the plate.

For a well-posed problem boundary conditions must be
specified. The plate under consideration lies in the x�y plane
with the coordinate reference placed at its center so that its edges
are located at x¼7a/2 and y¼7b/2. On these edges, the
boundary conditions correspond to free edges defined by

Mn ¼ 0
@Mns

@s
þQn ¼ 0

are prescribed where n represents normal and s represents
transverse directions, respectively. The plate is modeled as
isotropic and thin with uniform geometry. Four springs, all of
varying stiffness, provide support for the plate. Finally, any
number of discrete masses can be added to the system.
Experimental results are available for two discrete masses
providing a framework for a comparison.

Since no exact solution exists for the governing equation, the
Rayleigh–Ritz method and COMSOL finite element analysis are
used to approximate the natural frequencies and modes shapes.
4. Rayleigh–Ritz analysis

The total potential energy P for the system containing elastic
supports and discrete masses is given as

P¼UplateþUsprings�Tplate ð2Þ
Please cite this article as: Watkins RJ, et al. Vibration response of a
Walled Struct (2010), doi:10.1016/j.tws.2010.02.005
Here Uplate is the strain energy of the plate given by

Uplate ¼
D

2

ZZ
R

@2w

@x2
þ
@2w

@y2

 !2

�2ð1�uÞ
@2w

@x2

@2w

@y2
�

@2w

@x@y

 !2
2
4

3
5

8<
:

9=
;dxdy

ð3Þ

where D is the flexural stiffness, n is Poisson’s ratio and w(x, y) is
the transverse displacement. The potential energy for the springs
is given as

Uspring ¼
1

2

X4

p ¼ 1

kpw2ðxp,ypÞ ð4Þ

and the kinetic energy, Tplate, is the kinetic energy of the plate and
added masses given by

Tplate ¼
rho2

2

ZZ
R

w2ðx,yÞdxdyþ
o2

2

XNq

q ¼ 0

mqw2ðxq,yqÞ ð5Þ

Above kp is the pth spring stiffnesses and mq the qth discrete
mass. The displacement w(x, y) may be expressed as

wðx,yÞ ¼
XN

i ¼ 1

XN

j ¼ 1

wijfiðxÞyjðyÞ ð6Þ

where fi(x) and yj(y) are the shape functions in the x- and
y-directions, respectively. In other studies, various types of shape
or basis functions have been used including beam shape functions
and orthogonal polynomials. Smith et al [9] considered
the buckling of isotropic plates under shear loading and solved
the corresponding problem using the Rayleigh–Ritz methods. The
authors considered a number of orthogonal polynomials as basis
functions including Chebyshev type-1 and type-2, Legendre,
Hermite, and Laguerre. Here orthonormal polynomials are used
as the basis functions which satisfy free–free boundary conditions
on all sides and are taken as f1(x)¼1 and f2(x)¼(x�B2)f1(x). The
remaining terms in the sequence are computed from the
recursion formula

fkþ1ðxÞ ¼ fx�BkgfkðxÞ�Ckfk�1ðxÞ

where kZ2 and

Bk ¼

R b
axf2

kdxR b
af

2
kdx

Ck ¼

R b
af

2
kdxR b

af
2
k�1dx

Also the sequence is normalized satisfyingZ b

a
fiðxÞfjðxÞ ¼ dij

To arrive at a discrete eigenvalue problem, Eqs. (2)–(6) are
combined, and the energy expression is minimized with respect
to the displacement coefficients wij. The resulting equation is in
the formX

m

X
n

ðKijmn�o2MijmnÞwmn ¼ 0 ð7Þ

where the components of K and M are defined by

Kijmn ¼DðAimbjnþuR2ðCimcjnþCmicnjÞþ2ð1�uÞR2EimejnþR4BimajnÞ

þ
X4

p ¼ 1

kpjiðxpÞyjðypÞjmðxpÞynðypÞ ð8Þ

Mijmn ¼MBimbjnþ
XN

q ¼ 0

mqjiðxqÞyðyqÞjjmðxqÞynðyqÞ ð9Þ

In Eq. (8), R is the plate’s aspect ratio a/b and M is the total
mass of the plate. MATHEMATICA was used for all numerical
computations.
n elastically point-supported plate with attached masses. Thin
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5. COMSOL finite element analysis

A COMSOL finite element model was developed to compare
with analytical and experimental results. This model was built to
handle each configuration by placing suitable point masses at the
appropriate locations. The model was developed with identical
plan-view dimensions, plate thickness and material properties,
spring stiffnesses, and spring locations as the above Rayleigh–Ritz
analysis.

The model was then meshed with the versatile COMSOL
two-dimensional Mindlin plate element from the structural
mechanics package. A Mindlin plate model seeks to capture
transverse shear deformation effects. However, the above
Rayleigh–Ritz model is built upon Kirchhoff plate theory
which neglects these higher order effects. To facilitate compar-
ison of the analytical and finite element solutions, the
transverse shear factor was reduced effectively to zero in the
COMSOL Mindlin plate elements. Structural damping was also
neglected.

The mesh had 19 904 elements. The mesh density is drama-
tically higher in two locations. These two locations correspond to
the point mass and/or the actuator mass locations. This single
model is suitable for all four configurations considered in this
paper, as use of a different mesh is a source of systematic
numerical error when comparing results. This mesh density gave
sufficient convergence; the numeric values of the resulting
natural frequencies are unchanged if a quarter of the number of
elements are used.

COMSOL is not a traditional finite element package; it is a
numeric partial differential equation solver. This allows for an
elegant incorporation of the linear springs by applying displace-
ment proportional forces at the four spring locations. Using the
above specified planar mesh and spring loads, a standard
COMSOL, undamped, eigenfrequency analysis was performed.
Although the software is capable of calculating any number of
fundamental frequencies, only the first eight natural frequencies
are reported for consistency.
Fig. 2. FRF for P

Please cite this article as: Watkins RJ, et al. Vibration response of a
Walled Struct (2010), doi:10.1016/j.tws.2010.02.005
6. Results

Experimental results were compared to both the Rayleigh–Ritz
method and the finite element method for each plate configuration.
Frequency spectra and frequency response functions were gener-
ated by impact analysis. The plate was struck at sixteen locations,
and time series were collected from both the impact hammer and
the three accelerometers. The accelerometers were located on the
plate so that all three could not possibly be located on a nodal line
for the first several modes. Fig. 2 presents the frequency response
functions (FRFs) for an impact at one corner of the plate. Other FRFs
are similar. As shown in Fig. 2, not all frequency peaks appear at
every accelerometer location or the peaks have much smaller
amplitudes for one or more locations; the modal analysis software
(ME’scope VES, Vibrant Technology, Inc.) uses this absence or relative
magnitude to determine the location and orientation of nodal lines
for each vibration mode. Damping ratios are also calculated and are
generally on the order of 1%. Frequency response functions and
spectra have been generated for configurations B through D.

Finite element analysis provides another means for comparing
results and was conducted using COMSOL Multi-Physics modeling
software. Both approaches provide frequencies and modes shapes
for the four plate configurations shown in Table 1. For the
Rayleigh–Ritz method, a convergence study was undertaken to
establish the number of terms, N, sufficient for the convergence of
the displacement expansion. Results indicate that most modes
converge after N¼9 or N2 terms in the displacement expansion.
For COMSOL, an optimal meshing strategy was incorporated to
mesh the solid model of the system resulting in 19 904 elements.
(Table 4)

Table 5–7 show frequencies results for each method for the
four configurations considered. In each configuration case, the
three rigid body modes and the first five bending modes are
presented. Table 5 presents experimental results. Configuration A
provides a baseline of the mechanical response of an elastically
point-supported plate with no added mass. The lowest rigid body
frequency of 9.70 Hz corresponds to the transverse mode while
late Impact.

n elastically point-supported plate with attached masses. Thin
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Table 4
Ritz convergence results for the configuration A (Hz).

N Rigid body modes Bending modes

f1 f2 f3 f4 f5 f6 f7 f8

3 9.65 10.4 10.7 77.3 121.2 168.5 225.7 225.7

5 9.64 10.4 10.7 74.4 106.8 134.9 193.2 193.2

7 9.64 10.4 10.7 73.4 106.1 133.4 188.8 188.8

9 9.64 10.4 10.7 73.4 106.1 133.4 188.7 188.7

11 9.64 10.4 10.7 73.4 106.1 133.4 188.6 188.7

13 9.64 10.4 10.7 73.4 106.1 133.4 188.7 188.7

15 9.64 10.4 10.7 73.4 106.1 133.4 188.7 188.7

Table 5
Experimental results for configurations A through D (Hz).

Configuration Rigid body modes Bending modes

f1 f2 f3 f4 f5 f6 f7 f8

A 9.70 12.6 12.8 70.4 104 120 180 181

B 9.30 12.7 12.5 70.5 104 118 180 178

C 9.04 12.7 12.5 72.7 107 121 179 –

D 8.53 11.5 12.6 70.9 96 117 170 181

Table 6
Rayleigh Ritz results for configurations A through D (Hz).

Configuration Rigid body modes Bending modes

f1 f2 f3 f4 f5 f6 f7 f8

A 9.64 10.4 10.7 73.4 106.1 133.4 188.7 188.7

B 9.61 10.1 10.4 73.4 106.1 133.3 188.7 188.7

C 9.40 10.1 10.6 73.4 102.7 131.2 188.8 189.0

D 9.04 9.68 10.4 73.4 102.6 131.0 188.8 189.0

Table 7
COMSOL results for configurations A through D (Hz).

Configuration Rigid body modes Bending modes

f1 f2 f3 f4 f5 f6 f7 f8

A 10.47 13.41 14.6 74.7 105.9 133.4 187.8 187.8

B 10.02 13.41 14.6 74.3 105.6 120.2 187.3 187.4

C 9.79 13.40 14.6 74.3 105.6 114.2 187.3 187.4

D 9.31 11.94 14.1 74.3 83.12 119.6 163.2 187.3

Fig. 3. Rigid Mode 2 Configuration A.

Fig. 4. Rigid Mode 3 Configuration A.

Fig. 5. Rigid Mode 2 Configuration D.
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Please cite this article as: Watkins RJ, et al. Vibration response of a
Walled Struct (2010), doi:10.1016/j.tws.2010.02.005
the two frequencies of 12.6 and 12.8 Hz correspond to the
rotational rigid body modes, a difference of 2.9 Hz or 31.9% from
the transverse mode. Mode shapes for rigid body modes 2 and 3
are presented in Figs. 3 and 4 for this baseline case. Nodal lines
are directed along the major diagonals revealing the effect of
unequal spring stiffnesses. These nodal lines are orthogonal.
Configurations B and C do not differ in their corresponding second
and third rigid body mode frequencies, even though there is a
significant change in mass added between the two configurations.
The effect of added mass can be seen in the first rigid body mode
frequency; as expected, the corresponding frequency decreases
with increasing mass. But because the masses are placed along
nodal lines for the next two modes, the effect of added mass is
minimal for these modes.

Configuration D, which includes a centrally located mass and
the actuator located on one side, also gives a decreased frequency
for the first rigid body mode. This configuration tends to reduce
the effect of the unequal spring stiffnesses. The second and third
mode shapes for this case are shown in Figs. 5 and 6. Nodal lines
are orthogonal to the sides of the plate, similar to those for a plate
supported on springs with equal stiffnesses.

Comparing the fundamental frequency from both approaches
with the experimental fundamental frequency for configuration A
shows that a 0.62% difference occurs with the Rayleigh–Ritz
method while 7.94% difference occurs with results computed
using COMSOL. For configuration D, the percent differences for
this mode are 6.0% for the Rayleigh–Ritz approach and 9.1% for
COMSOL. These are the largest of all the cases. Assessing results
n elastically point-supported plate with attached masses. Thin
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for configuration C reveals a 20.4% difference exists when
compared with the Rayleigh–Ritz for mode 2, while only a
5.51% difference occurs when comparing with COMSOL results. In
general, considered modes with larger frequencies result in less
accurate frequency comparisons with the Rayleigh–Ritz method,
while better agreement is noticed with COMSOL results. The
difference in accuracy is most likely due to the orthogonal
polynomial basis functions used in the Ritz method.

Figs. 7–11 show modes shapes for the first five bending modes
found using ME’scope. The modes are the same for configurations
Fig. 6. Rigid Mode 3 Configuration D.

Fig. 7. Bending Mode 1 Configuration A.

Fig. 8. Bending Mode 2 Configuration A.

Please cite this article as: Watkins RJ, et al. Vibration response of a
Walled Struct (2010), doi:10.1016/j.tws.2010.02.005
A and D. In these plots, no nodal lines are present, but lines of
symmetry are present along the main diagonals in Fig. 8 and along
the sides in Fig. 9. Bending mode 3 has no nodes but is symmetric
about the plate center. This mode corresponds to the first bending
mode of a free–free plate. Modes shapes 4 and 5 are shown in
Figs. 10 and 11.

In general, frequencies for a given mode are affected most
when the added masses are not mounted along nodal lines. For
example, the frequency for bending mode 3 differs significantly
for each configuration; the mode has no nodes or nodal lines,
Fig. 9. Bending Mode 3 Configuration A.

Fig. 10. Bending Mode 4 Configuration A.

Fig. 11. Bending Mode 5 Configuration A.

n elastically point-supported plate with attached masses. Thin
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so no mass could be mounted at a point that would have no effect
on the frequency. The frequency for mode 4 differs significantly
when configurations A and D are compared. For configuration D,
the actuator is placed at a point that does not lie on a nodal line,
causing a significant drop in the corresponding frequency. For
mode 5, however, the actuator does lie on a nodal line. It can be
seen that the frequency for this mode and configuration does not
differ from that of configuration A, despite the significant change
in total system mass.
Fig. 12. Rigid Mode 1 Configuration A.

Fig. 13. Rigid Mode 2 Configuration A.

Fig. 14. Rigid Mode 3 Configuration A.

Please cite this article as: Watkins RJ, et al. Vibration response of a
Walled Struct (2010), doi:10.1016/j.tws.2010.02.005
Mode shapes for configurations A and D were generated in
MATHEMATICA for comparison with experimental mode shapes.
Rigid body modes given in Figs. 12–14 are for configuration A, and
modes shapes given in Figs. 15–17 are for configuration D. The
frequencies of the rotational modes computed by the Rayleigh–
Ritz method for configuration A differ by only 0.3 Hz which results
in identical rigid body mode shapes for modes 2 and 3. For
configuration D, a difference of 0.72 Hz exists between the two
rotational modes, resulting in mode shapes that have nodal lines
Fig. 15. Rigid Mode 1 Configuration D.

Fig. 16. Rigid Mode 2 Configuration D.

Fig. 17. Rigid Mode 3 Configuration D.

n elastically point-supported plate with attached masses. Thin
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Fig. 18. Bending Mode 1 Configuration A.

Fig. 19. Bending Mode 2 Configuration A.

Fig. 20. Bending Mode 3 Configuration A.

Fig. 21. Bending Mode 4 Configuration A.

Fig. 22. Bending Mode 5 Configuration A.
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that are orthogonal to each other (shown in Figs. 16 and 17). The
mode shapes fall short of a favorable comparison with those
shown in Figs. 5 and 6.

Figs. 18–22 show the first five bending mode shapes for both
configurations A and D. Bending mode shape 3 represents the first
bending mode for a free–free plate as extracted from the
experimental data. Each mode shape compares favorably with
modes extracted by ME’scope software.
Please cite this article as: Watkins RJ, et al. Vibration response of a
Walled Struct (2010), doi:10.1016/j.tws.2010.02.005
7. Conclusion

In the present study, an experimental investigation of
vibratory behavior for a spring-supported plate with strategically
placed point masses was performed. Using an impact-based
measurement method ME’Scope modal analysis software identi-
fied the first eight natural frequencies and the corresponding
mode shapes. The first three modes were rigid body-type motions
of the plate on the springs. The higher frequency modes were
more strongly related to bending of the plate. It was observed that
the first three rigid body motion natural frequencies were more
sensitive to the inclusion of point masses than were the plate
bending modes.

These experimental results were subsequently compared to
two approximate solutions. The first of the two approximations
was the Rayleigh–Ritz-based minimization of the potential energy
functional for the idealized spring-mass-plate system from the
experiment. The Rayleigh–Ritz analysis invoked orthonormal
polynomial shape functions, each of which satisfied the free
boundary conditions. The second approximation was a COMSOL
finite element model. The COMSOL analysis implemented Mindlin
plate elements with transverse shear stiffness suitably increased
for comparison with the Kirchhoff plate model of the Rayleigh–
Ritz analysis.

The Rayleigh–Ritz analysis was able to suitably capture first
three rigid body mode natural frequencies for a majority of
experimental configurations. However, there were intriguing
differences between the experimentally obtained mode shapes
and the Rayleigh–Ritz analysis mode shapes. These results
n elastically point-supported plate with attached masses. Thin
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suggest that the selection of basis functions has a significant
influence on the accuracy of results obtained from the Ritz
analysis. The COMSOL analysis also captured the trend of the rigid
body mode natural frequencies, but the predictions were some-
what higher than the predictions of the Rayleigh–Ritz analysis.

Both the Rayleigh–Ritz analysis and COMSOL model were able
to effectively capture the experimentally observed high frequency
plate bending modes. In general, the two models were in excellent
agreement with each other, and slightly higher than the
experimental results. These minor differences are to be expected,
as both models effectively invoke Kirchhoff-type plate behavior.
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